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 A B S T R A C T

Domain adaptive person re-identification (Re-ID) faces challenges due to inherent noise from limited domain 
transferability and the uncertainty in pseudo-label generation. To address this, we propose NODW (Noise 
Optimization and Dynamic Weighting), a comprehensive domain adaptive person Re-ID framework that sys-
tematically tackles these issues through quantitative noise assessment and dynamic optimization. Our method 
proposes: (1) an enhanced ResNet50-pro backbone specifically designed for cross-domain feature extraction, 
(2) a silhouette coefficient-based module for pseudo-label quality assessment with dynamic weighting, (3) a 
Maximum Mean Discrepancy (MMD)-based module for minimizing domain transferability limitations, and (4) a 
robust consistency supervision mechanism to ensure stable feature learning. Extensive experiments demonstrate 
state-of-the-art performance across multiple domain transfer tasks, achieving mAP scores of 73.8% (Market to 
Duke), 84.7% (Duke to Market), 34.2% (Market to MSMT), and 35.6% (Duke to MSMT). These results represent 
significant improvements over existing methods, particularly in challenging scenarios with large domain gaps, 
validating the effectiveness of our noise-aware adaptation strategy.
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1. Introduction

Domain Adaptive Person Re-identification (Re-ID) refers to the task 
of identifying and matching individuals across different camera views 
in surveillance systems, where the data distribution (appearance of 
individuals, lighting, background, etc.) differs between the source do-
main and the target domain (unseen). The main goal is to adapt the 
model trained on the source domain to perform well on the target 
domain without requiring extensive labeled data [1,2]. A fundamental 
challenge in domain adaptive Re-ID deployment is the significant per-
formance degradation when models trained on one domain (source) are 
applied to another (target) due to domain shift [3,4]. This challenge is 
particularly acute in real-world scenarios, where variations in camera 
characteristics, lighting conditions, and environmental factors create 
substantial distributional discrepancies between domains.

Traditional supervised Re-ID methods require extensive manual 
annotations and struggle with cross-domain generalization [5]. The 
primary challenges of traditional Re-ID include handling cross-camera 
variations, intra-class variability, inter-class similarity, occlusions, and 
scalability issues, which make it difficult to consistently identify in-
dividuals across different views. In contrast, domain adaptive Re-ID 
specifically addresses the domain shift problem, focusing on adapt-
ing models to perform well in new, unseen domains without exten-
sive labeled data [6]. Unlike traditional Re-ID, domain adaptive Re-
ID leverages unsupervised learning, semi-supervised learning, or self-
supervised learning and aims to learn domain-invariant features that 
generalize across diverse environments, making it more robust for 
real-world applications [7,8].

Thus, the primary challenges of domain adaptive person Re-ID 
include Domain Shift and Label Scarcity. Images of different individuals 
from the same domain often appear more similar than images of 
the same individual across different domains (Fig.  1), creating core 
challenges for feature learning. The absence of target domain labels 
necessitates pseudo-label generation, introducing additional noise and 
uncertainty into the learning process.

Current pseudo-label-based methods [9–11] typically employ a two-
stage framework (Fig.  2): source domain pre-training followed by it-
erative pseudo-label generation and refinement. Despite their effec-
tiveness, these methods suffer from three major limitations. The first 
is pseudo-label noise. Existing clustering-based methods [12,13] often 
employ DBSCAN [14] for its robustness to outliers, making it more ef-
fective than K-means in handling complex data distributions and noise. 
However, they lack systematic assessment of pseudo-label quality, lead-
ing to error propagation during training. While MMT [9] introduced 
teacher–student mutual learning and [15] proposed self-consistency 
refinement, these methods address symptoms rather than underlying 
causes of noise. The second is limited transferability. Domain disparities 
introduce inherent noise that fundamentally limits feature transfer-
ability. Previous works like [16,17] employed self-training and triplet 
loss but failed to quantitatively assess and address this transfer-related 
noise. Recent attempts [18,19] focus on pseudo-label optimization 
without explicitly considering domain transfer limitations. The third 
challenge is consistency maintenance. Existing frameworks struggle 
to maintain prediction consistency across different views of the same 
identity, particularly when domain shift is significant. While some 
methods [10] employ mutual refinement, they lack mechanisms to 
ensure robust cross-view consistency.

Building upon the challenges identified in existing methods and 
inspired by MMT [9], we propose NODW (Noise Optimization and 
Dynamic Weighting), a comprehensive domain adaptive person Re-ID 
framework that makes several key contributions:

• An enhanced feature extraction backbone (ResNet50-pro) specifi-
cally designed for domain adaptive Re-ID, incorporating domain-
aware feature learning mechanisms.
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• A novel silhouette-coefficient-based noise assessment module, 
providing quantitative metrics for pseudo-label reliability and 
enabling dynamic weight adjustment.

• A Maximum Mean Discrepancy (MMD)-based transferability as-
sessment module that explicitly quantifies and minimizes domain 
discrepancy during training.

• A robust consistency supervision mechanism ensures stable fea-
ture learning across domain shifts.

Together, these modules form a cohesive framework that systematically 
addresses noise, transferability, and consistency challenges in domain 
adaptive Re-ID.

Our framework fundamentally differs from previous methods. It 
introduces reliable noise metrics to enable dynamic weighting for 
pseudo-label refinement, explicitly addresses domain transferability 
limitations through MMD-based modules, and maintains robust cross-
view consistency-supervised alignment. Extensive experiments on Mar-
ket1501, DukeMTMC-reID, and MSMT17 datasets validate our method. 
The results demonstrate state-of-the-art performance with significant 
improvements in both accuracy and robustness. Our approach achieves 
particular advantages in challenging scenarios with large domain gaps, 
validating the effectiveness of our noise-aware adaptation strategy.

2. Background

Domain adaptive person Re-ID is a crucial computer vision task 
aimed at matching individuals across non-overlapping cameras in 
surveillance networks. A significant challenge in its deployment is 
the performance degradation when models are applied across diverse 
domains and conditions due to domain shifts. This often leads to per-
formance degradation, necessitating the development of robust domain 
adaptive methodologies to bridge the gap between training and de-
ployment distributions. Addressing this challenge requires developing 
robust domain adaptive methodologies to mitigate the discrepancies 
between training and deployment distributions.

2.1. Domain adaptive person re-identification

Person Re-ID systems identify individuals across multiple camera 
views by extracting discriminative features robust to environmental 
and viewpoint variations [20,21]. Traditional methods primarily relied 
on supervised learning, where models were trained on extensively 
annotated datasets with identity labels [22]. While achieving high 
accuracy, these methods suffered from limited generalization to unseen 
scenarios and the prohibitive cost of large-scale annotation.

Combining these two learning paradigms, domain adaptive per-
son Re-ID addresses the crucial challenge of transferring knowledge 
from a labeled source domain to an unlabeled target domain, focus-
ing on learning identity-discriminative features without explicit iden-
tity labels [23]. This framework combines the advantages of super-
vised and unsupervised learning, offering a practical solution for real-
world deployment scenarios [5]. Early approaches, such as [24], em-
ployed cross-dataset transfer learning through multi-task dictionary 
learning. [25] advanced this concept by disentangling identity-related 
and identity-unrelated features, facilitating more focused domain adap-
tation. Adversarial learning has proven effective in domain adaptive 
Re-ID. Notable works include PTGAN [26] and ATNet [27], which 
employ generative adversarial networks for style transfer between do-
mains. Recent advances in self-supervised learning have significantly 
enhanced pseudo-label refinement for domain adaptive Re-ID, such 
as [28,29], have focused on clustering re-training, joint loss learning, 
and data augmentation methods. Clustering and pseudo-label optimiza-
tion methods generate pseudo-labels for target domain data, facilitating 
self-supervised learning. Notable improvements have been made in 
pseudo-label reliability assessment, as demonstrated in [9,11,30].
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Fig. 1. Illustration of the domain shift challenge in person Re-ID. Images from different identities within the same camera domain (intra-domain) often show higher feature 
similarity than images of the same identity across different camera domains (inter-domain), emphasizing the core challenge of cross-domain feature learning.
Fig. 2. Overview of conventional pseudo-label-based domain adaptive Re-ID frameworks. The process consists of two main stages: (1) source domain pre-training for initial feature 
extraction, and (2) iterative pseudo-label generation and optimization in the target domain through clustering-based methods.
2.2. Pseudo-label-based domain adaptation

Pseudo-label-based methods have emerged as a promising strategy 
for domain adaptive Re-ID. These approaches typically involve source 
domain pre-training and target domain adaptation through pseudo-
label generation and refinement. However, the effectiveness of these 
methods is often limited by two critical challenges. The first is pseudo-
label noise. Current methods usually suffer from noisy pseudo-labels 
3

generated through clustering, leading to error propagation during train-
ing. The second is noise from limited transferability. The inherent do-
main gap creates noise in feature representations, affecting the quality 
of pseudo-labels and subsequent adaptation [25].

While existing works have proposed various strategies for pseudo-
label refinement, systematic assessment and optimization of noise 
sources remain understudied. [31] introduced an enhanced discrim-
inative clustering (AD-Cluster) approach that refines clusters in the 
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target domain to improve the model’s discriminative performance. [32] 
proposed a multi-label classification loss (MMCL) for label prediction, 
which includes similarity calculation and cycle consistency to ensure 
high-quality pseudo-labels, thereby boosting re-ID performance. [9] 
developed the Mutual Mean-Teaching (MMT) framework, which refines 
pseudo-labels by offline and online processes to learn better features 
from the target domain. Similarly, [33] employed a mean teacher 
approach to assess pseudo-label reliability through uncertainty (mea-
sured by consistency level), optimizing pseudo-label quality to improve 
model performance. [15] introduced the self-consistency refinement 
method (SECRET), which mutually refines pseudo-labels generated 
from different feature spaces to enhance cross-domain re-ID perfor-
mance progressively. However, they lack quantitative measures for 
noise assessment. The impact of inherent noise due to limited transfer-
ability between domains presents another significant challenge. While 
some methods [26,27] employ adversarial learning to address domain 
gaps, they often overlook the systematic assessment and mitigation of 
transfer-related noise.

Current domain adaptive Re-ID methods face several limitations, 
including the absence of systematic assessment standards for pseudo-
label noise, insufficient attention to the inherent noise from limited 
domain transferability, and the lack of comprehensive frameworks that 
simultaneously address both types of noise. Our work tackles these 
issues by introducing a novel framework for the quantitative assess-
ment of pseudo-label noise and a dedicated module for analyzing and 
optimizing inherent transfer-related noise. Furthermore, we propose 
a comprehensive framework for domain adaptive person Re-ID that 
effectively addresses those challenges. This systematic approach to 
noise assessment and optimization marks a notable advancement in the 
domain adaptive person re-identification, providing both theoretical 
insights and practical performance improvements.

3. Methodology

3.1. Problem definition

The primary challenge in domain adaptive person re-identification 
(Re-ID) is domain shift, wherein the underlying data distributions 
exhibit significant divergence between source domain (training) and 
target (unseen application) domains. This distributional discrepancy 
invariably leads to substantial performance degradation. Formally, we 
define the problem as follows:

Given a labeled source domain 𝑠 = {𝐹𝑠, 𝑌𝑠} = {(𝑥𝑠𝑖 , 𝑦
𝑠
𝑖 )}

𝑁𝑠
𝑖=1, where 

𝐹𝑠 ⊂ R𝑑 is the feature space and 𝑌𝑠 the label space, and an unlabeled 
(unseen) target domain 𝑡 = {𝐹𝑡, 𝑌𝑡}. The source domain comprises 
samples {𝑥𝑠𝑖 ∈ 𝑋𝑠} and the target domain {𝑥𝑡𝑖 ∈ 𝑋𝑡}. Since 𝑌𝑡 is 
unknown and unseen, it is approximated through clustering-generated 
pseudo-labels, where target samples are partitioned into 𝐶𝑡 clusters, 
yielding {𝑦𝑡𝑖 ∈ 𝑌𝑡} for {𝑥𝑡𝑖 ∈ 𝑋𝑡}. Our objective is to learn a mapping 
function 𝑓 ∶ 𝐹𝑠 → 𝐹𝑡 that minimizes domain shift while preserving 
discriminative features essential for Re-ID.

Two types of noise affect this process: (1) Inherent Noise from lim-
ited cross-domain transferability, and (2) Clustering Noise from imper-
fect pseudo-label assignments. To address these challenges, we propose 
a two-stage methodology. The initial stage focuses on source domain 
pre-training, where a deep neural network architecture is trained on the 
source domain to learn robust feature representations. The subsequent 
stage encompasses pseudo-label generation and optimization, wherein 
the model undergoes fine-tuning on the target domain. This work 
primarily focuses on the second stage, with particular emphasis on 
addressing the two types of noise through a dual-step approach: first, 
developing formal definitions and identification mechanisms for differ-
ent noise types, and subsequently, implementing targeted strategies for 
noise mitigation.
4

3.2. Network architecture

To extract more discriminative features for the domain adaptive 
tasks, we propose ResNet50-pro based on ResNet50 [34]. We modify 
the last convolutional block by setting its stride to 1 and adding 
a downsampling layer to increase spatial resolution. In layer 3, we 
implement dual feature extraction paths for high-level and low-level 
features, thereby enhancing the spatial resolution of feature maps and 
preserving fine-grained spatial information critical for person Re-ID.

In the high-level feature branch, we integrate a non-local block post 
layer 3: 

𝑌𝑖 =
1

(𝑋)
∑

∀𝑗
𝑓 (𝑋𝑖, 𝑋𝑗 ) ⋅ 𝑔(𝑋𝑗 ) (1)

where 𝑌𝑖 enhances position 𝑖 using information from the entire feature 
map. This operation effectively captures global structural information 
and long-range dependencies in the feature space. We replace the 
Global Average Pooling (GAP) with Generalized Mean Pooling (GMP), 
followed by a fully connected (FC) layer, batch normalization (BN), and 
a MemoryBank module [35].

The low-level branch applies GAP, a linear layer, and BN to match 
the high-level feature dimension. We implement independent classi-
fiers for each feature type, enabling multi-task learning that captures 
complementary feature characteristics.

Building on [9], we implement a Mutual Mean-Teaching (MMT) 
framework with dual student–teacher networks. Both student networks 
(𝑓 (𝑥; 𝜃𝑠)) and teacher networks (𝑓 (𝑥; 𝜃𝑡)) share the ResNet50-pro ar-
chitecture but with different initialization. Feature extraction occurs in 
both domains: 
𝑧A,B𝑠 = 𝑓 (𝑥; 𝜃A,B𝑠 ) ∈ R𝑑 , 𝑥 ∈ 𝑠

𝑧A,B𝑡 = 𝑓 (𝑥; 𝜃A,B𝑠 ) ∈ R𝑑 , 𝑥 ∈ 𝑡
(2)

where 𝑑 denotes the feature dimension.
We employ DBSCAN clustering for target domain pseudo-labels and 

update student networks through cross-network learning: 
𝜃A,new𝑠 = Update(𝜃A𝑠 ,PseudoLabels

B)

𝜃B,new𝑠 = Update(𝜃B𝑠 ,PseudoLabels
A)

(3)

where PseudoLabels is derived from temporal ensemble models.
Teacher network parameters evolve via Exponential Moving Average 
(EMA): 
𝜃A,B𝑡 ← 𝛼𝑚𝜃

A,B
𝑡 + (1 − 𝛼𝑚)𝜃A,B𝑠 (4)

where 𝛼𝑚 is the ensembling momentum, set to 0.999 in this paper.
Fig.  3 provides a comprehensive visualization of our framework. 

The architecture operates in two distinct stages: initial source domain 
pre-training (green section) and subsequent domain adaptation (blue 
section). The yellow section delineates our proposed noise optimization 
and dynamic weighting modules, detailed in subsequent sections.

3.3. Silhouette-coefficient-based pseudo-label reliability assessment

While traditional clustering evaluation metrics such as purity and 
completeness [36] effectively assess cluster quality, they require ground
truth labels unavailable for the target domain (unseen test set). To 
address this, we propose a label quality assessment framework based on 
the silhouette coefficient (SC) [37] combined with a DBSCAN clustering 
algorithm.

The SC metric simultaneously evaluates two critical aspects of clus-
tering quality: intra-cluster variance (ICV) and inter-cluster separation 
(ICS). For any point 𝑥, we define SC as: 

𝑆𝐶(𝑥) =
𝑏(𝑥) − 𝑎(𝑥)

max{𝑎(𝑥), 𝑏(𝑥)}
(5)

where 𝑎(𝑥) quantifies ICV through the mean intra-cluster distance: 

𝑎(𝑥𝑖,𝑗 ) =
1

|𝐶 | − 1
∑

𝑑(𝑥𝑖, 𝑥𝑗 ) (6)

𝑥 𝑥𝑖,𝑗∈𝐶𝑥 ,𝑖≠𝑗
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Fig. 3. The system architecture of the proposed domain adaptive person Re-ID framework. Stage 1 (green) shows the enhanced ResNet50-pro backbone with dual-path feature 
extraction. Stage 2 (blue) depicts the MMT framework with dual student–teacher networks, where proposed modules handle noise optimization and dynamic weighting for robust 
domain adaptation.
Here, 𝑥𝑖,𝑗 represents points in cluster 𝐶𝑥, and 𝑑(𝑥𝑖, 𝑥𝑗 ) denotes the 
Euclidean distance. In our DBSCAN implementation, we specifically 
consider core points to minimize outlier influence, as clusters are 
formed based on density characteristics.

Conversely, 𝑏(𝑥) quantifies ICS, representing dissimilarity between 
clusters: 

𝑏(𝑥) = min
𝐶≠𝐶𝑥

(

1
|𝐶|

∑

𝑦∈𝐶
𝑑(𝑥, 𝑦)

)

(7)

where 𝑥 and 𝑦 are core points in clusters 𝐶𝑥 and 𝐶 respectively. 
𝑏(𝑥) is the minimum average distance from 𝑥 to points in the nearest 
distinct cluster. This formulation ensures robust measurement of cluster 
separation by considering only density-connected core points.

For noise points identified by DBSCAN, we assign 𝑆𝐶(𝑥) = −1, 
explicitly marking their outlier status. The resulting SC scores range 
from −1 to 1. This approach ensures that the 𝑆𝐶(𝑥) accurately reflects 
the density and separation in DBSCAN, offering a robust measure of 
ICV and ICS. A score close to 1 indicates well-clustered data points, with 
𝑎(𝑥) significantly smaller than 𝑏(𝑥), suggesting proximity to their cluster 
rather than neighboring clusters. A score near 0 implies closeness to 
the decision boundary between clusters, while a score near −1 suggests 
possible misassignment to the wrong cluster. By calculating 𝑆𝐶(𝑥), we 
can refine pseudo-labels more accurately. Data points with 𝑆𝐶(𝑥) >
0 are considered reliable, while those with 𝑆𝐶(𝑥) < 0 are deemed 
unreliable.

3.4. Dynamic weighting strategy

Building upon our Silhouette-Coefficient-based assessment proposed 
in Section 3.3, to further manage noise, we propose a dynamic weight-
ing strategy to modulate pseudo-label influence throughout training. 
5

Unlike conventional methods that discard unreliable pseudo-labels, our 
method preserves all samples while adjusting their training impact 
based on reliability scores and training progression.

For a pseudo-label 𝑦𝑖 associated with samples 𝑋𝑖 = {𝑥1𝑖 , 𝑥
2
𝑖 ,… , 𝑥𝑚𝑖 }, 

we define the dynamic weight 𝑤(𝑡)𝑖 as: 

𝑤(𝑡)𝑖 =

⎧

⎪

⎨

⎪

⎩

1−𝑒−𝛼𝑡
1−𝑒−𝛼𝑡𝑚 , if 𝑆𝐶(𝑥𝑖) < 0,
𝑆𝐶(𝑥𝑖)+1

2 , if 𝑆𝐶(𝑥𝑖) > 0
(8)

where 𝑡 denotes the current epoch, 𝑡𝑚 is the maximum epoch and 𝛼
controls the weight adjustment rate. In our paper, optimal 𝛼 values are 
task-dependent: 𝛼 = 1.0 for Market to Duke, 𝛼 = 2.0 for Duke to Market, 
and 𝛼 = 3.0 for tasks involving MSMT17. This part is demonstrated in 
our ablation studies.

The algorithmic flow is illustrated in Algorithm 1.
Algorithm 1 presents the complete optimization procedure. The key 

innovation lies in the progressive adaptation of sample weights: unreli-
able samples initially contribute minimally to model updates, with their 
influence gradually increasing as the model’s feature representation im-
proves. This approach ensures robust learning while maintaining com-
prehensive sample coverage, as validated by our experimental results 
showing consistent performance improvements across all evaluation 
metrics.

3.5. MMD-based assessment and optimization module

Beyond the clustering noise discussed in Section 3.3, another signif-
icant source of noise in domain adaptive Re-ID is the inherent noise due 
to limited transferability between domains. To address this problem, 
we propose a specialized assessment and optimization module that 
quantifies and minimizes this domain-specific noise through an adapted 
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1

1

Algorithm 1: Progressive Pseudo-Label Optimization with 
Reliability-based Dynamic Weighting
Input: Source domain data 𝑠, Target domain data 𝑡, 

Maximum Epoch 𝑡𝑚, Sharpness factor 𝛼
Output: Trained Model 

1 Initialize model  with source domain data 𝐷𝑠
2 for 𝑡 = 1 to 𝑡𝑚 do
3 Step 1: Feature Learning
4 Extract features for target domain: {𝑓 (𝑥𝑡𝑖)}

𝑁𝑡
𝑖=1 where 𝑥𝑡𝑖 ∈ 𝐷𝑡

5 Step 2: Pseudo-Label Generation
6 Cluster the target domain features {𝑓 (𝑥𝑡𝑖)} to generate 

pseudo-labels {𝑦𝑖}𝑁𝑡
𝑖=1

7 Step 3: Pseudo-Label Classification and Weight 
Assignment

8 for each pseudo-label 𝑦𝑖 do
9 Compute credibility score 𝑆𝐶(𝑥𝑖) for instances 𝑋𝑖

corresponding to 𝑦𝑖
10 if 𝑆𝐶(𝑥𝑖) < 0 then
11 Assign weight: 𝑤(𝑡)𝑖 =

1−𝑒−𝛼𝑡
1−𝑒−𝛼𝑡𝑚

12 else
13 Assign weight: 𝑤(𝑡)𝑖 =

𝑆𝐶(𝑥𝑖)+1
2

14 end
5 end 
6 Step 4: Model Training Update
7 Update model  using weighted pseudo-labels:

 =
∑

𝑖=1
𝑤(𝑡)𝑖 ⋅ ((𝑥𝑖), 𝑦𝑖)

8 end 

Maximum Mean Discrepancy (MMD) [38] framework. Our adaptation 
focuses specifically on person Re-ID feature spaces, where the domain 
shift manifests in identity-relevant characteristics.

We quantify domain shift through statistical distribution analysis in 
the feature embedding space. Given feature extractors 𝐹𝑠(⋅) and 𝐹𝑡(⋅)
mapping to identity-sensitive representations, we initially formulate the 
MMD as: 

𝑀𝑀𝐷(𝐷𝑠, 𝐷𝑡) =
‖

‖

‖

‖

‖

‖

1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝐹𝑠(𝑥𝑠𝑖 ) −

1
𝑁𝑡

𝑁𝑡
∑

𝑗=1
𝐹𝑡(𝑥𝑡𝑗 )

‖

‖

‖

‖

‖

‖

(9)

This equation can measure distribution dissimilarity by calculating the 
difference between the means of feature representations in the two 
domains, providing a robust estimate of domain shift. A smaller MMD 
value suggests less domain shift and greater transferability. To further 
analyze domain discrepancies, inspired by [38], we extend Eq. (9) to 
a reproducing kernel Hilbert space (RKHS) representation through the 
Kullback–Leibler (KL) divergence: 

𝑀𝑀𝐷(𝑝𝑠(𝑥𝑠), 𝑝𝑡(𝑥𝑡)) =
‖

‖

‖

E𝑥𝑠∼𝑝𝑠(𝑥𝑠)[𝜙(𝑥
𝑠)] − E𝑥𝑡∼𝑝𝑡(𝑥𝑡)[𝜙(𝑥

𝑡)]‖‖
‖

2


(10)

For now, Eq. (10) is calculated from samples, and as the sample size 
approaches infinity, the empirical estimate converges to the theoretical 
MMD. Expanding Eq. (10), we have: 

𝑀𝑀𝐷
2
=

(

1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝜙(𝑥𝑠𝑖 ) −

1
𝑁𝑡

𝑁𝑡
∑

𝑗=1
𝜙(𝑥𝑡𝑗 )

)⊤ (

1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝜙(𝑥𝑠𝑖 ) −

1
𝑁𝑡

𝑁𝑡
∑

𝑗=1
𝜙(𝑥𝑡𝑗 )

)

=
‖

‖

‖

‖

‖

‖

1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝜙(𝑥𝑠𝑖 )

‖

‖

‖

‖

‖

‖

2



+
‖

‖

‖

‖

‖

‖

1
𝑁𝑡

𝑁𝑡
∑

𝑗=1
𝜙(𝑥𝑡𝑗 )

‖

‖

‖

‖

‖

‖

2



− 2

(

1
𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝜙(𝑥𝑠𝑖 )

)⊤ (

1
𝑁𝑡

𝑁𝑡
∑

𝑗=1
𝜙(𝑥𝑡𝑗 )

)

(11)
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For computational efficiency in high-dimensional Re-ID feature spaces, 
we develop a kernel-based formulation: 

𝑀𝑀𝐷
2
= 1

𝑁2
𝑠

𝑁𝑠
∑

𝑖=1

𝑁𝑠
∑

𝑖′=1
𝑘(𝑥𝑠𝑖 , 𝑥

𝑠
𝑖′ )

+ 1
𝑁2

𝑡

𝑁𝑡
∑

𝑗=1

𝑁𝑡
∑

𝑗′=1
𝑘(𝑥𝑡𝑗 , 𝑥

𝑡
𝑗′ )

− 2
𝑁𝑠𝑁𝑡

𝑁𝑠
∑

𝑖=1

𝑁𝑡
∑

𝑗=1
𝑘(𝑥𝑠𝑖 , 𝑥

𝑡
𝑗 )

(12)

where 𝑘(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖2∕2𝜎2) is our chosen Gaussian kernel. 
This choice ensures stability via Mercer’s theorem [39] while capturing 
nonlinear relationships crucial for person Re-ID. And based on the Law 
of Large Numbers [40] and Hoeffding’s inequality [41], our tailored 
𝑀𝑀𝐷

2 from Eq. (12) converges to 𝑀𝑀𝐷(𝑝𝑠(𝑥𝑠), 𝑝𝑡(𝑥𝑡)) from Eq. (10).
The MMD estimate between 𝑠 and 𝑡 is theoretically bounded by 

a probabilistic inequality. For finite samples of size 𝑛 drawn from each 
domain, with probability at least 1− 𝛿, the following inequality holds: 

|MMD2(𝑠,𝑡) − M̂MD
2
| ≤ 2

√

log(2∕𝛿)
𝑛

(13)

This bound has significant implications for batch size selection in 
domain adaptation. Firstly, the estimation error decreases at a rate 
of 𝑂(1∕

√

𝑛). Secondly, larger batch sizes result in tighter bounds on 
the true MMD. For a Gaussian kernel defined as 𝑘(𝑥, 𝑦) = exp(−‖𝑥 −
𝑦‖2∕2𝜎2), the MMD’s discriminative power is further bounded by: 

MMD(𝑃𝑠, 𝑃𝑡) ≤
1
𝜎

√

E𝑥∼𝑃𝑠 ,𝑦∼𝑃𝑡 [‖𝑥 − 𝑦‖2] (14)

Through extensive experiments (Section 4.6.2), the optimal 𝜎 is 1.0 and 
the recommended batch size is 128. 

During training, we compute gradients and update model parame-
ters using limited samples. Thus, the Eq. (12) transforms to a form of 
MMD loss function: 

MMD = 𝑀𝑀𝐷
2
= 1

𝑁2
𝑠

𝑁𝑠
∑

𝑖=1

𝑁𝑠
∑

𝑖′=1
𝑘(𝑥𝑠𝑖 , 𝑥

𝑠
𝑖′ )

+ 1
𝑁2

𝑡

𝑁𝑡
∑

𝑗=1

𝑁𝑡
∑

𝑗′=1
𝑘(𝑥𝑡𝑗 , 𝑥

𝑡
𝑗′ )

− 2
𝑁𝑠𝑁𝑡

𝑁𝑠
∑

𝑖=1

𝑁𝑡
∑

𝑗=1
𝑘(𝑥𝑠𝑖 , 𝑥

𝑡
𝑗 )

(15)

This MMD loss ensures theoretical and practical consistency, effec-
tively reducing distribution discrepancies between source and target 
domains. By minimizing the intrinsic noise due to limited transfer-
ability, it enhances domain adaptive Re-ID performance. The proposed 
Eq. (15) is employed during the MMT label optimization and training 
process in the second stage.

3.6. Consistency-supervised module

In MMT frameworks for domain adaptive learning, prediction dis-
crepancies between the student and teacher models occur when pro-
cessing perturbed versions of the same input. To minimize these dis-
crepancies, the student model’s predictions must align with the teacher 
model’s more stable outputs across various augmentations of the same 
input during training. We address this by introducing a class center 
𝑃𝑔 , which leverages data distribution from both the source and target 
domains to generate more reliable pseudo-labels. The class center 𝑃𝑔 is 
defined as: 
𝑃𝑔 = 𝐶𝑠 + 𝐶𝑡 (16)

where 𝐶𝑠 and 𝐶𝑡 are the class centers for the source and target do-
mains, respectively. Combining these centers enhances the pseudo-label 
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generation process. By calculating the similarity between target do-
main samples and 𝑃𝑔 , we generate soft pseudo-labels to improve label 
quality. The soft pseudo-label 𝑝̃𝑖 is generated: 

𝑝̃𝑖 =
𝑃𝑔 ⋅ 𝑓 (𝑥𝑖)

‖𝑃𝑔‖‖𝑓 (𝑥𝑖)‖
(17)

where 𝑝̃𝑖 indicates the model’s confidence in assigning sample 𝑥𝑖 to 
a particular class. A higher similarity between 𝑝̃𝑖 and 𝑃𝑔 results in 
increased confidence.

To further enforce prediction consistency, we utilize KL divergence 
to measure discrepancies between the student and teacher models’ 
outputs on perturbed inputs: 

𝑐 =
1
𝑁

𝑁
∑

𝑖=1
𝐷𝐾𝐿(𝑓 (𝑥′𝑖 ; 𝜃𝑠) ∥ 𝑓 (𝑥′𝑖 ; 𝜃𝑡)) (18)

where 𝑥′𝑖 represents the perturbed input, and 𝑓 (𝑥′𝑖 ; 𝜃𝑠) and 𝑓 (𝑥′𝑖 ; 𝜃𝑡)
denote the output probability distributions of the student and teacher 
models, respectively. The soft pseudo-label 𝑝̃𝑖 guides the student
model’s training by ensuring alignment with the pseudo-labels. We 
define the pseudo-label loss as follows: 

𝑝 =
1
𝑁

𝑁
∑

𝑖=1
𝐷𝐾𝐿(𝑝̂𝑖 ∥ 𝑝̃𝑖) (19)

where 𝑝̂𝑖 is the prediction by the student model. This loss measures 
the divergence between the student model’s predictions and the soft 
pseudo-labels. This soft labeling approach allows for uncertainty in the 
pseudo-label assignments, making the system more robust to noise.

During the optimization stage, we introduce uncertainty into the 
triplet loss for consistency supervision. First, we calculate the uncer-
tainty of each sample: 

𝑢𝑐 = 𝐷𝐾𝐿(𝑝̃𝑖 ∥ 𝑝𝑖) =
𝐾𝑟
∑

𝑘=1
𝑝̃𝑖,𝑘 log

𝑝̃𝑖,𝑘
𝑝𝑖,𝑘

(20)

Following [42], the uncertainty modulation for the triplet loss is de-
fined as: 
𝑢𝑎𝑝𝑖𝑐 = 1

𝑒𝑢𝑎𝑐
+ 1

𝑒𝑢
𝑝𝑖
𝑐

𝑢𝑎𝑛𝑖𝑐 = 1
𝑒𝑢𝑎𝑐

+ 1
𝑒𝑢

𝑛𝑖
𝑐

(21)

where 𝑢𝑎𝑝𝑖𝑐  and 𝑢𝑎𝑛𝑖𝑐  represent the uncertainty associated with posi-
tive and negative samples relative to the anchor. The uncertainty-
modulated triplet loss is given by: 

tri = − 1
𝑁

𝑁
∑

𝑖=1
log

(

𝑒−𝑢
𝑎𝑝𝑖
𝑐 ⋅𝐷(𝑎,𝑝)

𝑒−𝑢
𝑎𝑝𝑖
𝑐 ⋅𝐷(𝑎,𝑝) + 𝑒−𝑢

𝑎𝑛𝑖
𝑐 ⋅𝐷(𝑎,𝑛)

)

(22)

In this equation, softmax normalization is applied to the Euclidean 
distances 𝐷(𝑎, 𝑛) and 𝐷(𝑎, 𝑝) of negative and positive sample pairs, 
respectively. This process smooths the loss function, ensuring that each 
sample contributes a gradient, thereby effectively transmitting loss 
information.

3.7. Loss functions

In our method, each module plays a critical role in improving the 
model’s performance to adapt to noisy and domain-shifted data. This 
Section rigorously examines the relationships between modules from 
Section 3.3, 3.4, 3.5, and 3.6, and how they collectively contribute to 
the overall loss function optimization.

Firstly, it is the core losses in our method: the cross-entropy loss 
𝑡
ce for classification and the triplet loss 𝑡

tri for metric learning. The 
cross-entropy loss 𝑡

ce is defined as: 

𝑡
ce = − 1

𝑁

𝑁
∑

𝐶
∑

𝐲smooth,𝑖,𝑗 ⋅ log
(

exp(𝑥𝑖,𝑗 )
∑𝐶

)

(23)
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𝑖=1 𝑗=1 𝑘=1 exp(𝑥𝑖,𝑘)
where 𝑁 is the batch size, 𝐲smooth,𝑖,𝑗 represents smoothed labels, cor-
responding to true labels for source domain data and pseudo-labels for 
target domain data, and 𝑥 denotes the sample instances. The triplet loss 
𝑡
tri is expressed as: 

𝑡
tri = − 1

𝑁𝑡

𝑁𝑡
∑

𝑖=1
log

(

𝑒−𝐷(𝑎,𝑝)

𝑒−𝐷(𝑎,𝑝) + 𝑒−𝐷(𝑎,𝑛)

)

(24)

where 𝐷(𝑎, 𝑛) and 𝐷(𝑎, 𝑝) are the Euclidean distances between the 
anchor-negative and anchor-positive pairs, respectively. These two 
losses, 𝑡

ce and 𝑡
tri, also constitute the complete loss function for Stage 

One (source domain pre-training).
Except for the two core losses, based on Section 3.6, we also employ 

an uncertainty-modulated triplet loss 𝑡
tri, which is defined as: 

𝑡
tri𝑢𝑐

= − 1
𝑁

𝑁
∑

𝑖=1
log

(

𝑒−𝑢
𝑎𝑝𝑖
𝑐 ⋅𝐷(𝑎,𝑝)

𝑒−𝑢
𝑎𝑝𝑖
𝑐 ⋅𝐷(𝑎,𝑝) + 𝑒−𝑢

𝑎𝑛𝑖
𝑐 ⋅𝐷(𝑎,𝑛)

)

(25)

where 𝑢𝑎𝑝𝑖𝑐  and 𝑢𝑎𝑛𝑖𝑐  are uncertainty factors from Eq. (21) for positive 
and negative samples, respectively. The uncertainty modulation fac-
tor adjusts the triplet loss based on the confidence of pseudo-label 
assignments, paying more attention to more reliable triplets while 
down-weighting uncertain ones.

The Dynamic Weighting adjusts the influence of pseudo-labels
throughout the training process based on the Eq. (8). During early train-
ing, when pseudo-labels are less reliable, their weights are reduced, 
allowing the model to focus more on the reliable labels. The MMD 
loss from Eq. (15) directly addresses the domain shift by minimizing 
the distribution discrepancy between the source and target domains. 
This loss ensures that the feature representations of both domains are 
aligned in a shared space, which is essential for the model to generalize 
well on the target domain. The consistency-supervised loss operates 
on two levels: the consistency loss from Eq. (18) and the pseudo-label 
consistency loss from Eq. (19). Consistency supervision ensures robust 
feature learning and stable pseudo-label generation.

The final loss function total integrates all components with care-
fully chosen weights: 

total =
∑

𝑖=1
𝑤(𝑡)𝑖

(

𝛾1𝑡
ce + 𝛾2𝑡

tri + 𝛾3𝑡
tri𝑢𝑐

+ 𝛾4(𝑐 + 𝑝) + 𝛾5MMD
)

(26)

where 𝛾1, 𝛾2, 𝛾3, 𝛾4, and 𝛾5 are weights balancing these loss functions, 
and 𝑤(𝑡)𝑖 denotes dynamic weight adjustment during training.

4. Experiments

4.1. Datasets

To rigorously evaluate our proposed method, we conducted exten-
sive experiments on three widely-adopted person Re-ID benchmarks: 
Market1501 [20], DukeMTMC-reID [43], and MSMT17 [26]. These 
datasets represent increasing levels of complexity and scale in person 
Re-ID challenges, offering diverse evaluation scenarios that closely 
approximate real-world surveillance applications. Table  1 presents a 
comprehensive overview of these benchmarks’ characteristics.

These datasets collectively present a comprehensive evaluation 
framework, encompassing variations in illumination, viewpoint, back-
ground complexity, occlusion patterns, and environmental conditions. 
Such diversity is essential for validating the generalization capability 
and practical applicability of person Re-ID algorithms in real-world 
deployment scenarios.

4.2. Metrics

Followed by existing work [9,10,12], Cumulative Matching Char-
acteristics (CMC) [44] and mean Average Precision (mAP) [20,45] are 
employed as objective evaluation metrics to evaluate the performance 
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Table 1
Summary of Three Person Re-identification Benchmarks.
 Dataset Market1501 DukeMTMC-reID MSMT17  
 Number of Cameras 6 8 15 (12 outdoor, 3 indoor)  
 Total Images 32,668 36,411 126,441  
 Number of Persons 1,501 1,110 4,101  
 Training Images 12,936 16,522 32,621  
 Training Persons 751 702 1,041  
 Testing Images 19,732 19,889 93,820  
 Testing Persons 750 702 3,060  
 Query Images 3,368 2,228 11,659  
 Gallery Images 16,364 17,661 82,161  
 Additional Challenges Multiple camera 

perspectives
Camera view and 
background diversity

Camera intra- and 
inter-variations

 

of our proposed methods. mAP measures the mean of the Average Pre-
cision (AP) across all queries. For a single query 𝑖, the AP is calculated 
as: 

AP𝑖 =
1
𝑚𝑖

𝑛𝑖
∑

𝑗=1
𝑃 (𝑗) ⋅ 1(relevant𝑗 ) (27)

where 𝑚𝑖 is the number of relevant instances for query 𝑖, 𝑛𝑖 is the total 
number of instances retrieved, and 𝑃 (𝑗) is the precision at rank 𝑗. 1(⋅)
is a indicator function. Then the mAP is then given by: 

mAP = 1
𝑁

𝑁
∑

𝑖=1
AP𝑖 (28)

where 𝑁 is the total number of queries. In our paper, the CMC is 
represented as the probability that a correct match appears within the 
top 𝑘 ranks, where 𝑘 ∈ {1, 5, 10}. If 𝑅𝑖 is the rank of the first correct 
match for the 𝑖th query, the Rank-𝑘 accuracy is defined as: 

Rank-𝑘 = 1
𝑁

𝑁
∑

𝑖=1
1(𝑅𝑖 ≤ 𝑘) (29)

where 1(⋅) is the indicator function, which equals 1 if 𝑅𝑖 ≤ 𝑘, and 
0 otherwise, and 𝑁 is the total number of queries. These metrics are 
widely recognized and utilized within the field of Re-ID.

4.3. Implementation details

Our implementation framework consists of two distinct stages: 
source domain pre-training and domain adaptive learning. We de-
tail the technical specifications, hyperparameters, and computational 
requirements for reproducibility.

All experiments were conducted using the PyTorch framework 
on a single NVIDIA RTX 4090 GPU with CUDA 12.0. We employed 
ResNet50-pro architecture initialized with ImageNet pre-trained
weights (detailed in Section 3.2). Input images underwent standardized 
preprocessing: resizing to 256 × 128 pixels followed by data augmen-
tation comprising random horizontal flipping, cropping with 10-pixel 
padding, and random erasing. We maintained a consistent batch size 
of 128 across all experiments, with each identity represented by 4
instances to ensure stable mini-batch sampling.

In the first stage of source domain pre-training, we employed the 
Adam optimizer with an initial learning rate of 1 × 10−3. The learning 
rate schedule incorporated a 10-epoch warm-up period, with decay 
points implemented at epochs 40 and 70 to ensure optimal conver-
gence. For the second stage of domain adaptive learning, we utilized 
the DBSCAN clustering algorithm with parameters eps = 0.6 and 
min_samples = 4. The optimization process continued with the Adam 
optimizer, maintaining the initial learning rate of 1 × 10−3 and a mo-
mentum of 0.9. The loss function weights were empirically determined 
as 𝛾1 = 1.0, 𝛾2 = 1.0, 𝛾3 = 0.3, 𝛾4 = 0.3, and 𝛾5 = 0.5, with training 
extending over 80 epochs.

The implementation follows a systematic two-stage approach. Dur-
ing the initial source domain training phase, we employ supervised 
8

Table 2
Model Complexity and Resource Requirements Analysis.
 Architecture Parameters Memory FLOPs 
 Base (ResNet-50) 25.69M 102.76 MB 6.01G 
 Enhanced (ResNet-50-pro) 38.53M 154.12 MB 7.71G 

learning on the source domain data 𝑠 = {𝐹𝑠, 𝑌𝑠} to obtain a pre-trained 
model 𝐹 (⋅ ∣ 𝜃) capable of discriminative feature extraction. The subse-
quent domain adaptive learning phase begins with feature extraction 
from the target domain 𝑡 = {𝐹𝑡}, followed by DBSCAN clustering for 
hard pseudo-label generation (𝑦̃𝑡𝑖). These pseudo-labels undergo quality 
assessment using Eq. (5), with dynamic weights assigned according to 
Eq. (8). The process concludes with the implementation of the MMT 
framework, utilizing the loss function defined in Eq. (26).

Table  2 provides a detailed analysis of model complexity and com-
putational requirements. The teacher–student framework employs iden-
tical architectures for both networks, with the teacher network main-
tained as an EMA of the student network. This configuration results 
in a total parameter count of 77.06M and approximately 308.24 MB 
memory requirement, effectively balancing computational efficiency 
with model performance.

The whole implementation process is shown in Algorithm 2:

4.4. Comparison with the state-of-the-art methods

To rigorously evaluate our proposed method, we conducted compre-
hensive comparisons with state-of-the-art (SOTA) methods across four 
challenging cross-domain person Re-ID tasks: Market to Duke, Duke to 
Market, Market to MSMT, and Duke to MSMT. Tables  3 and 4 present 
detailed performance comparisons using standard evaluation metrics.

Table  3 demonstrates our method’s superior performance on bidi-
rectional transfer tasks between Market1501 and DukeMTMC datasets. 
In the Market to Duke task, our method achieves SOTA performance 
with mAP of 73.8% and Rank-1/5/10 accuracies of 85.2%∕93.1%∕95.3%, 
respectively. These results represent significant improvements over the 
previous best method (AWB [48]), with gains of 2.9% in mAP, 1.4% in 
Rank-1, 1.8% in Rank-5, and 1.3% in Rank-10 accuracy.

For the Duke to Market task, our method demonstrates even more 
compelling performance, achieving 84.7% mAP and 94.6%∕97.9%∕99.1%
in Rank-1/5/10 metrics. This represents substantial improvements over 
previous SOTA results across multiple metrics: surpassing SECRET [15] 
by 1.8% in mAP, AWB [48] by 1.1% in Rank-1, and DREAMT [51] by 
1.9% and 0.4% in Rank-5 and Rank-10, respectively.

To further validate our method’s generalization capability, we con-
ducted experiments on more challenging transfer tasks involving the 
MSMT17 dataset, which presents additional complexities due to its 
larger scale and greater environmental variations. As shown in Ta-
ble  4, our method maintains its superior performance in these more 
demanding scenarios.



Applied Soft Computing 174 (2025) 112932Z. Wang et al.

1

1

1

1

1

1

1

Algorithm 2: The implementation process of our proposed 
method
Input: source domain set 𝑠 = {𝐹𝑠, 𝑌𝑠}, target domain set 

𝑡 = {𝐹𝑡}
Output: 𝐹 (⋅ ∣ 𝜃)

1 The first stage: pre-training on source domain
Input : Source domain set 𝑠 = {𝐹𝑠, 𝑌𝑠}
Output: Pre-trained model 𝐹 (⋅ ∣ 𝜃)

2 1. Initialize the model;
3 2. Define the loss function according to Eqs. (23) and (24);
4 3. Train the initialized model on the source domain through 

supervised learning;
5 4. Finish training and obtain the pre-trained model with 

discriminative features 𝐹 (⋅ ∣ 𝜃);
6 The second stage: domain-adaptive learning
Input : Pre-trained model 𝐹 (⋅ ∣ 𝜃), target domain set 𝑡 = {𝐹𝑡}
Input : High robust domain-adaptive person re-identification 

model
7 foreach Iterate 𝑘 = 1, 2,… , 𝐾 do
8 1. Extract features 𝐹𝑡 from target domain 𝑡 = {𝐹𝑡} through 

𝐹 (⋅ ∣ 𝜃);
9 2. Cluster the extracted features 𝐹𝑡 and generate hard 

pseudo-labels 𝑦̃𝑡𝑖 through DBSCAN;
0 3. Build new dataset ′

𝑡 = {𝐹𝑡, 𝑦̃𝑡𝑖};
1 4. Assess the generated pseudo-labels 𝑦̃𝑡𝑖 according to Eq. (5);
2 5. Set the dynamic weighting 𝜔𝑖 according to the assessment 

result in step 4 and Eq. (8);
3 6. Generate soft pseudo-labels 𝑦̂𝑡𝑖 and optimize them based 

on MMT;
4 7. Define loss functions according to Eq. (26);
5 8. Update and fine-tune the model 𝐹 (⋅ ∣ 𝜃) by epochs;
6 Finally, a highly robust domain adaptive person 

re-identification model is trained 𝐹 (⋅ ∣ 𝜃);

For the Market to MSMT task, our method achieves 34.2% mAP 
and 65.8%∕75.5%∕79.3% in Rank-1/5/10 accuracy, substantially outper-
forming the previous best method (P2LR [47]) by margins of 4.3%, 
4.8%, 2.4%, and 1.4% across respective metrics. Similarly, in the Duke 
to MSMT task, our method demonstrates remarkable results with 35.6% 
mAP and 66.5%∕77.8%∕80.6% in Rank-1/5/10 metrics. These results 
represent significant improvements over previous SOTA methods: sur-
passing DREAMT by 5.3% in mAP and AWB [48] by 5.5%, 4.3%, and 
2.7% in Rank-1/5/10 accuracy, respectively.

The consistent performance advantages across all transfer scenarios, 
particularly in the more challenging MSMT17-based tasks, validate our 
method’s robust generalization capability and practical applicability in 
complex cross-domain person Re-ID scenarios.

4.5. Ablation study

4.5.1. Ablation study for proposed modules
To evaluate the contribution of each proposed component, we con-

ducted comprehensive ablation studies. Using MMT with ResNet50 as 
our baseline [9], we progressively incorporated our proposed modules:

• B (w/ ResNet50): Baseline implementation with standard
ResNet50 backbone.

• B (w/ ResNet50-pro): Optimized backbone architecture (Sec-
tion 3.2)

• SC&DW: Silhouette-coefficient-based assessment and dynamic 
weighting module (Eqs. (5), (8))

• MMD: MMD-based module (Section 3.5 and Eq. (15))
• C: Consistency-supervised module (Eqs. (18), (19), (22))
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Tables  5 and 6 present the results on Market to Duke and Mar-
ket/Duke to MSMT tasks, respectively.

From Table  5, the ResNet50-pro backbone demonstrates clear ad-
vantages over the baseline ResNet50. For Market to Duke, it improves 
mAP from 64.1% to 66.2% (+2.1%) and Rank-1 from 77.8% to 78.8% 
(+1.0%). Similar gains are seen in Duke to Market, with mAP increas-
ing from 71.6% to 73.8% (+2.2%) and Rank-1 from 87.3% to 88.9% 
(+1.6%). Adding the SC&DW module further enhances performance. On 
Market to Duke, mAP improves to 68.6% (+2.4%) and Rank-1 to 81.5% 
(+2.7%). The Duke to Market task shows similar improvements with 
mAP reaching 76.8% (+3.0%) and Rank-1 achieving 90.2% (+1.3%). 
The incorporation of MMD yields substantial gains across both tasks. 
For Market to Duke, mAP increases to 72.6% (+4.0%) and Rank-1 
to 84.7% (+3.2%). In Duke to Market, we observe improvements to 
82.1% (+5.3%) in mAP and 93.3% (+3.1%) in Rank-1. Finally, the con-
sistency supervision module completes our framework, achieving the 
best performance with mAP/Rank-1 scores of 73.8%∕85.2% for Market 
to Duke and 84.7%∕94.6% for Duke to Market, representing additional 
improvements of 1.2%∕0.5% and 2.6%∕1.3% respectively.

Table  6 further validates these findings on more challenging Mar-
ket/Duke to MSMT tasks. The complete model achieves substantial 
improvements over the baseline, with final mAP/Rank-1 scores of 
34.2%∕65.8% for Market to MSMT17 and 35.6%∕66.5% for Duke to 
MSMT, demonstrating the effectiveness of our proposed components 
across diverse cross-domain scenarios.

4.5.2. Ablation study on improvement of the backbone
The backbone network is pivotal due to its enhanced feature ex-

traction capabilities, particularly beneficial for person re-identification. 
Our ResNet50-pro’s architecture (Section 3.2) facilitates the repre-
sentation of complex patterns across domains, increasing the model’s 
robustness and adaptability. This strategic selection leverages advanced 
convolutional features to capture domain-specific nuances, directly 
contributing to improved performance. We analyze the impact of three 
main components within the enhanced backbone on performance:

• B(w/ ResNet50): Uses the original ResNet50 as in [9].
• LL (Low-Level Layer): Adds a low-level feature extraction layer 
at layer 3 of ResNet50, introducing a dual feature extraction 
mechanism.

• non-local: Implements a non-local block to aggregate information 
from distant image regions, enhancing contextual understanding.

• memorybank: Adopts a memory bank from [35] to store and 
update feature representations during training.

As shown in Table  7, each component contributes incrementally 
to performance improvement. For the Market to Duke task, the low-
level feature extraction layer provides a 1.2% improvement in mAP 
(64.1% to 65.3%), demonstrating the importance of multi-scale feature 
learning. The addition of the non-local block further enhances mAP by 
0.7% (65.3% to 66.0%), validating its effectiveness in capturing global 
contextual information. The memory bank mechanism provides an ad-
ditional 0.2% improvement (66.0% to 66.2%), resulting in the optimal 
configuration. Similar patterns are observed in the Duke to Market 
direction, where the components yield mAP improvements of 0.6%, 
1.1%, and 0.5% respectively. The consistent improvements across both 
transfer directions validate the generalizability of our architectural 
enhancements.

For the more challenging MSMT17 transfer tasks (Table  8), the 
improvements become more pronounced. In the Market to MSMT task, 
the low-level feature extraction layer contributes a substantial 1.1% 
mAP improvement, while the non-local block and memory bank add 
1.0% and 0.3% respectively. The Duke to MSMT results show even 
larger gains: 0.9%, 1.4%, and 0.3% in mAP for each component.

Notably, the non-local block demonstrates particularly strong per-
formance improvements in MSMT17 tasks, suggesting its effectiveness 
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Table 3
Comparisons with the SOTA Methods Between Market1501 and DukeMTMC datasets.
 Methods Market to Duke Duke to Market
 mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) 
 MMCL (CVPR, 2020) [32] 51.4 72.4 82.9 85.0 60.4 84.4 92.8 95.0  
 AD-Cluster (CVPR, 2020) [31] 54.1 72.6 82.5 85.5 68.3 86.7 94.4 96.5  
 MMT (ICLR, 2020) [9] 65.1 78.0 88.8 92.5 71.2 87.7 94.9 96.9  
 MEN-Net(ECCV, 2020) [11] 66.1 79.6 88.3 92.2 76.0 89.9 96.0 97.5  
 SpCL (NeurIPS,2020) [10] 68.8 82.9 90.1 92.5 76.7 90.3 96.2 97.7  
 HGA (AAAI, 2021) [46] 67.1 79.4 88.7 90.3 70.3 89.5 93.6 95.5  
 GCMT (IJCAI, 2021) [30] 67.8 81.1 91.1 93.9 77.1 90.6 96.3 97.7  
 UNRN (AAAI, 2021) [33] 69.1 82.0 90.7 93.5 78.1 91.9 96.1 97.8  
 P2LR (AAAI, 2022) [47] 70.8 82.6 90.8 93.7 81.0 92.6 97.4 98.3  
 SECRET (AAAI, 2022) [15] 68.8 81.7 – – 82.9 93.1 – –  
 AWB (TIP, 2022) [48] 70.9 83.8 92.3 94.0 81.0 93.5 97.4 98.3  
 MDJL (PR, 2023) [49] 62.8 78.6 86.6 88.7 59.8 80.3 87.4 89.9  
 FastReID (MM, 2023) [50] 69.2 82.7 – – 80.5 92.7 – –  
 DREAMT (TIM, 2023) [51] 69.8 82.3 90.9 93.6 81.4 93.3 98.0 98.7  
 Ours 73.8 85.2 93.1 95.3 84.7 94.6 97.9 99.1  
Best results are underlined and bold, second-best are underlined only.
Table 4
Comparisons with the SOTA Methods on Market to MSMT and Duke to MSMT Tasks.
 Method Market to MSMT Duke to MSMT
 mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) 
 MMCL (CVPR, 2020) [32] 15.1 40.8 51.8 56.7 16.2 43.6 54.3 58.9  
 AD-Cluster (CVPR, 2020) [31] – – – – – – – –  
 MMT (ICLR, 2020) [9] 22.9 49.2 63.1 68.8 23.5 50.0 63.6 69.2  
 MEN-Net(ECCV, 2020) [11] – – – – – – – –  
 SpCL (NeurIPS,2020) [10] 26.8 53.7 65.0 69.8 26.5 53.1 65.8 70.5  
 HGA (AAAI, 2021) [46] 25.5 55.1 61.2 65.5 26.8 58.6 64.7 69.2  
 GCMT (IJCAI, 2021) [30] 24.9 54.8 – – 26.6 57.9 – –  
 UNRN (AAAI, 2021) [33] 25.3 52.4 64.7 69.7 26.2 54.9 67.3 70.6  
 P2LR (AAAI, 2022) [47] 29.9 60.9 73.1 77.9 29.0 58.8 71.2 76.0  
 SECRET (AAAI, 2022) [15] – – – – – – – –  
 AWB (TIP, 2022) [48] 29.0 57.3 70.7 75.9 29.5 61.0 73.5 77.9  
 MDJL (PR, 2023) [49] 13.4 34.3 44.5 50.6 17.1 40.3 51.2 56.3  
 FastReID (MM, 2023) [50] 26.5 56.6 – – 27.7 59.5 – –  
 DREAMT (TIM, 2023) [51] 25.3 51.6 64.3 69.7 30.3 58.0 70.5 75.3  
 Ours 34.2 65.8 75.5 79.3 35.6 66.5 77.8 80.6  
Best results are underlined and bold, second-best are underlined only.
Table 5
Ablation Study Results on Market to Duke and Duke to Market Tasks.
 Components Market to Duke Duke to Market
 B(w/ ResNet50) B(w/ ResNet50-pro) SC&DW MMD C mAP(%) Rank-1(%) mAP(%) Rank-1(%) 
 ✓ – – – – 64.1 77.8 71.6 87.3  
 – ✓ – – – 66.2 78.8 73.8 88.9  
 – ✓ ✓ – – 68.6 81.5 76.8 90.2  
 – ✓ ✓ ✓ – 72.6 84.7 82.1 93.3  
 – ✓ ✓ ✓ ✓ 73.8 85.2 84.7 94.6  
The best results are marked in bold.
in handling more complex domain shifts. This aligns with our intuition 
that long-range dependencies become increasingly important as domain 
complexity grows. The consistent, albeit smaller, contributions from the 
memory bank mechanism indicate its role in stabilizing feature learning 
across all transfer scenarios.

4.5.3. Computational efficiency analysis
Building upon the architectural analysis discussed in Section 3.2, 

we analyze the computational requirements of our ResNet50-pro model 
in comparison with contemporary architectures. Table  9 presents a 
quantitative comparison of model complexity across key metrics.

As shown in Table  9, our model effectively balances model ca-
pacity, computational efficiency, and memory usage, making it a ver-
satile solution for practical applications. By strategically enhancing 
the base ResNet50, our model achieves a 50% increase in parameters 
with only a moderate 28.3% increase in FLOPs, demonstrating com-
petitive efficiency compared to more resource-intensive architectures 
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like MGN, ViT-Base, and DINO-v2. While maintaining a peak mem-
ory consumption of approximately 3-4 GB, ResNet50-pro significantly 
outperforms lightweight models like OSNet in feature representation 
and remains comparable to HRNet-W32 in complexity and perfor-
mance. This efficiency-performance balance is particularly crucial for 
real-world applications requiring robust feature extraction and do-
main adaptation capabilities while operating within typical hardware 
constraints.

4.5.4. Training time analysis
We conducted comprehensive training efficiency analyses using a 

single NVIDIA RTX 4090 GPU, with consistent batch size 128 and train-
ing epochs 80 across all experiments. Tables  10, 11, 12, and 13 present 
the computational requirements for different model configurations on 
four cross-domain tasks.

The integration of each module led to incremental increases in 
training time. As shown in Table  10, for the Market to Duke task, 
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Table 6
Ablation Study Results on Market/Duke to MSMT Tasks.
 Components Market to MSMT Duke to MSMT
 B(w/ ResNet50) B(w/ ResNet50-pro) SC+DW MMD C mAP(%) Rank-1(%) mAP(%) Rank-1(%) 
 ✓ – – – – 21.9 48.8 23.6 49.7  
 – ✓ – – – 24.3 54.5 26.2 59.4  
 – ✓ ✓ – – 27.9 58.1 28.6 60.2  
 – ✓ ✓ ✓ – 32.3 63.0 34.2 64.9  
 – ✓ ✓ ✓ ✓ 34.2 65.8 35.6 66.5  
The best results are marked in bold.
Table 7
Ablation Study Results for Backbone on Market to Duke and Duke to Market Tasks.
 components Market to Duke Duke to Market
 B(w/ ResNet50) +LL +non-local +memorybank mAP(%) Rank-1(%) mAP(%) Rank-1(%) 
 ✓ – – – 64.1 77.8 71.6 87.3  
 ✓ ✓ – – 65.3 78.1 72.2 87.5  
 ✓ ✓ ✓ – 66.0 78.5 73.3 88.6  
 ✓ ✓ ✓ ✓ 66.2 78.8 73.8 88.9  
The best results are marked in bold.
Table 8
Ablation Study Results for Backbone on Market/Duke to MSMT Tasks.
 components Market to MSMT Duke to MSMT17
 B(w/ ResNet50) +LL +non-local +memorybank mAP(%) Rank-1(%) mAP(%) Rank-1(%) 
 ✓ – – – 21.9 48.8 23.6 49.7  
 ✓ ✓ – – 23.0 52.2 24.5 53.9  
 ✓ ✓ ✓ – 24.0 53.9 25.9 58.4  
 ✓ ✓ ✓ ✓ 24.3 54.5 26.2 59.4  
The best Results are marked in bold.
Table 9
Computational Complexity Comparison.
 Model Parameters FLOPs Peak Memorya 
 ResNet50 (Base) [34] 25.69M 6.01G ≈ 2 GB  
 ResNet-IBN-a [52] 28.12M 6.33G ≈ 2.5 GB  
 OSNet [53] 2.2M 2.0G ≈ 1.5 GB  
 MGN [54] 70.24M 14.2G ≈ 6 GB  
 HRNet-W32 [55] 41.23M 8.31G ≈ 4 GB  
 ViT-Base [56] 86M 17.6G ≈ 8 GB  
 DINO-v2 [57] 304M 55.4G ≈ 16 GB  
 ResNet50-pro (Ours) 38.53M 7.71G ≈ 3–4 GB  
a Peak runtime memory including all computations and buffer.

the SC&DW module added 23.52 s per epoch for silhouette scores 
and weight adjustments, MMD-based module contributed 13.08 s for 
kernel computations and distribution alignment, and the consistency-
supervised module demanded 62.21 s for maintaining teacher–student 
networks, generating soft pseudo-labels, computing Kullback–Leibler 
divergence, and updating global centers.

As shown in Table  11, the Duke to Market showed similar percent-
ages but lower absolute times due to Market’s smaller dataset, which 
is 18.42 s for SC&DW, 10.25 s for MMD-based module, and 48.72 s for 
Consistency-supervised module.

As shown in Table  12, the Market to MSMT task exhibited larger ab-
solute times due to MSMT17’s 2.5-fold larger dataset. SC&DW required 
58.80 s, MMD added 32.70 s, and Consistency-supervised module 
demanded 155.53 s.

Similarly, as shown in Table  13, Duke to MSMT showed interme-
diate times: SC&DW adding 46.10 s, MMD contributing 25.61 s, and 
Consistency-supervised module requiring 121.87 s.

Across all four tasks, while absolute times scaled with dataset sizes, 
percentage increases remained consistent: SC&DW at ≈ 88.4%, MMD-
based module at ≈ 26.1%, and Consistency-supervised module at ≈
98.4%. This pattern indicates linear scaling of computational complexity 
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with dataset size, with the Consistency module consistently being the 
most computationally intensive addition.

The relative computational overhead (take Market to Duke as an 
example) can be expressed as: 

𝑅𝑚𝑜𝑑𝑢𝑙𝑒 =
𝑇𝑚𝑜𝑑𝑢𝑙𝑒
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

=

⎧

⎪

⎨

⎪

⎩

1.88 for SC&DW
2.38 for SC&DW+MMD
4.71 for Full Model (SC&DW+MMD+C)

(30)

The epoch time variation also increased significantly from the base-
line’s 9-s range (24.09 − 33.15 s) to 41 s (107.27 − 148.05 s) in the 
full model. This variation is primarily due to the overhead from 
pseudo-label updates, clustering operations, and memory bank updates. 
While the full model exhibits increased computational requirements 
(167.26 min total training time), the overhead is justified by significant 
performance improvements in pseudo-label quality, domain alignment, 
and overall Re-ID accuracy. The training time remains practical for 
modern GPU architectures while achieving SOTA performance.

4.5.5. Convergence analysis
We analyze the convergence behavior of our framework across four 

domain adaptation tasks. The analysis encompasses both the evolution 
of evaluation metrics and the dynamics of different loss components 
during training. Fig.  4 shows the convergence patterns of mAP, Rank-1, 
Rank-5, and Rank-10 accuracy.

For Market to Duke and Duke to Market tasks, we observe rapid 
initial improvements (epochs 1–15), with mAP increasing from 42.3% 
to 67.4% (Market to Duke) and 45.6% to 74.5% (Duke to Market). The 
performance stabilizes during epochs 15–40, followed by fine-tuning 
until convergence at 73.8% for Market to Duke and 84.7% mAP for 
Duke to Market respectively. For Market/Duke to MSMT tasks, Fig. 
4 demonstrates more gradual convergence due to increased domain 
complexity, with mAP improving from 15.8% to 34.2% (Market to 
MSMT) and 16.4% to 35.6% (Duke to MSMT). These tasks exhibit 
periodic plateaus followed by performance improvements, reflecting 
the challenges of adapting to MSMT17’s diverse conditions.
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Table 10
Training Time Analysis on Market to Duke Task.
 Model Configuration Average Time

per Epoch (s)
Fastest
Epoch (s)

Slowest
Epoch (s)

Total Time
(min)

 

 Baseline 26.62 24.03 33.15 35.58  
 + SC&DW 50.14 47.21 62.36 66.83  
 + MMD 63.22 56.08 79.16 84.39  
 Full Model (SC&DW+MMD+C) 125.43 107.27 148.05 167.26  
Table 11
Training Time Analysis on Duke to Market Task.
 Model Configuration Average Time

per Epoch (s)
Fastest
Epoch (s)

Slowest
Epoch (s)

Total Time
(min)

 

 Baseline 20.84 18.82 25.96 27.85  
 + SC&DW 39.26 36.96 48.82 52.35  
 + MMD 49.51 43.92 61.98 66.01  
 Full Model (SC&DW+MMD+C) 98.23 84.02 115.94 130.97  
Table 12
Training Time Analysis on Market to MSMT Task.
 Model Configuration Average Time

per Epoch (s)
Fastest
Epoch (s)

Slowest
Epoch (s)

Total Time
(min)

 

 Baseline 66.55 60.08 82.88 88.95  
 + SC&DW 125.35 118.03 155.90 167.13  
 + MMD 158.05 140.20 197.90 210.73  
 Full Model (SC&DW+MMD+C) 313.58 268.18 370.13 418.11  
Table 13
Training Time Analysis on Duke to MSMT Task.
 Model Configuration Average Time

per Epoch (s)
Fastest
Epoch (s)

Slowest
Epoch (s)

Total Time
(min)

 

 Baseline 52.13 47.06 64.91 69.71  
 + SC&DW 98.23 92.48 122.13 130.97  
 + MMD 123.84 109.86 155.05 165.12  
 Full Model (SC&DW+MMD+C) 245.71 210.15 290.06 327.61  
Fig. 4. Metrics Tested on Target Domain during Training.
12
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Fig. 5. Losses during Training.
Fig.  5 shows the convergence patterns of different losses involved 
in our framework. The cross-entropy loss exhibits the fastest decay, 
reducing by approximately 80% within the first 20 epochs. Similarly, 
the triplet loss follows a comparable pattern but stabilizes more gradu-
ally. Both losses converge after 40 epochs, showing minor fluctuations 
thereafter. The MMD loss starts at values ranging between 0.28 and 
0.33 and reduces to a stable range of 0.03 to 0.08. The consistency 
loss maintains a similar trend with the MMD loss. The uncertainty loss, 
although smaller in magnitude, demonstrates stable convergence across 
tasks. 

The convergence behavior can be divided into three distinct phases. 
The first is the rapid adaptation phase (epochs 1–15). In this phase, a 
steep reduction in loss (≈ 70%) is observed, accompanied by significant 
performance gains. This phase achieves the most substantial domain 
alignment. The second is the refinement phase (epochs 15–40). In this 
phase, moderate loss reductions occur, leading to steady improvements 
in evaluation metrics. Feature representations are fine-tuned during this 
phase. The last is the stabilization phase (epochs 40–80). In this phase, 
minor and consistent improvements are observed, with loss fluctuations 
remaining below 5%. This phase consolidates the final performance.

Overall, our framework demonstrates stable convergence patterns 
across various domain adaptation scenarios. While more challenging 
tasks, such as those involving MSMT17, exhibit higher final loss values, 
the convergence trends remain consistent, validating the robustness of 
the proposed approach.

4.6. Parameter sensitivity analysis

4.6.1. Variations for 𝛼 in 𝑤(𝑡)
The hyperparameter 𝛼 in Eq. (8) governs the dynamic weighting 

adjustment rate during training. For unreliable samples (𝑆𝐶(𝑥) < 0), 𝛼
controls the rate of weight decay, while for reliable samples (𝑆𝐶(𝑥) >
0), the weight adjustment primarily depends on the sample’s silhouette 
coefficient from Eq. (5).

As shown in Fig.  6, optimal 𝛼 values vary significantly across 
different tasks. In the Market to Duke scenario, the model achieves 
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peak performance at 𝛼 = 1.0, with notable performance degradation 
observed when 𝛼 exceeds 2.0. For the Duke to Market task, opti-
mal results are obtained at 𝛼 = 2.0, where lower values result in 
slower convergence due to insufficient weight adjustment rates. In both 
MSMT17-related tasks, the model demonstrates the best performance 
at 𝛼 = 3.0, enabling rapid adaptation to sample reliability variations in 
this more complex domain.

This observed variation in optimal 𝛼 values exhibits a clear correla-
tion with underlying dataset characteristics. Target domains with lower 
noise levels benefit from smaller 𝛼 values, which maintain stable weight 
adjustments and prevent overly aggressive adaptations. Conversely, 
more challenging domains with higher noise levels require larger 𝛼
values to facilitate rapid reliability-based weight recalibration, enabling 
efficient adaptation to increased domain complexity. This relationship 
between dataset complexity and optimal 𝛼 values underscores the 
importance of appropriate hyperparameter selection in cross-domain 
person Re-ID tasks.

4.6.2. Analysis of MMD-based optimization module
To further validate our theoretical analysis, we explore the relation-

ship between MMD estimation accuracy and computational efficiency. 
We investigate the effects of batch size and kernel bandwidth 𝜎 on 
MMD estimation and Re-ID performance across four domain adaptation 
tasks. Our analysis focuses on the theoretical bounds and empirical 
validation of MMD-based optimization.

The theoretical bound in Eq. (13) suggests that the estimation 
error decreases at a rate of 𝑂(1∕

√

𝑛), where 𝑛 is the batch size. This 
relationship is empirically verified across all four domain adaptation 
tasks, as shown in Tables  14 and 15.

As shown in Table  14, for the Market to Duke task, increasing 
the batch size from 32 to 128 leads to substantial improvements in 
all metrics, with mAP rising significantly from 62.4% to 73.8% (an 
11.4% absolute improvement). Similar trends are observed in the Duke 
to Market direction, where mAP improves from 74.3% to 84.7% (a 
10.4% gain). Notably, the performance gains begin to plateau when the 
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Fig. 6. Performance analysis of different 𝛼 values in the dynamic weighting strategy. The evaluation spans four cross-domain Re-ID tasks with varying complexity levels. We report 
mAP and Rank-1/5/10 accuracies for: (a) Market to Duke, showing optimal performance at 𝛼 = 1.0; (b) Duke to Market, peaking at 𝛼 = 2.0; (c) Market to MSMT and (d) Duke to 
MSMT, both achieving best results at 𝛼 = 3.0.
Table 14
Effect of Batch Size on Market and Duke Tasks Performance.
 Market to Duke Duke to Market
 Batch Size mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) 
 32 62.4 75.2 84.6 87.8 74.3 87.8 92.4 94.5  
 64 65.8 78.9 87.5 90.6 78.5 90.2 94.8 96.7  
 128 73.8 85.2 93.1 95.3 84.7 94.6 97.9 99.1  
 256 73.6 85.3 92.8 95.3 84.8 94.2 97.8 99.1  
The best Results are marked in bold.
Table 15
Effect of Batch Size on MSMT17 Transfer Performance.
 Market to MSMT Duke to MSMT
 Batch Size mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) 
 32 28.4 52.1 63.8 68.5 27.8 51.4 64.5 69.2  
 64 30.2 54.8 67.2 71.4 29.5 53.9 68.4 72.8  
 128 34.2 65.8 75.5 79.3 35.6 66.5 77.8 80.6  
 256 33.9 65.5 75.6 79.4 35.5 66.4 77.9 80.7  
The best Results are marked in Bold.
batch size increases from 128 to 256, with minimal or no improvements 
across all metrics, suggesting that a batch size of 128 achieves an opti-
mal balance between estimation accuracy and model performance. The 
impact of batch size is even more pronounced in the more challenging 
MSMT17 transfer tasks, as illustrated in Table  15. These results align 
with our theoretical analysis, demonstrating that larger batch sizes of 
up to 128 provide more reliable MMD estimates, leading to better 
domain adaptation performance.

Regarding the kernel bandwidth 𝜎, Fig.  7 reveal its crucial role 
in model performance. For the Market to Duke task, we observe that 
𝜎 = 1.0 achieves the best performance with mAP of 73.8% and 
Rank-1 accuracy of 85.2%. As 𝜎 increases, performance deteriorates 
consistently, with mAP dropping to 68.7% at 𝜎 = 5.0, a significant 
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5.1% decrease. This pattern is even more pronounced in the Duke to 
Market task, where mAP declines from 84.7% to 80.6% as 𝜎 increases 
from 1.0 to 5.0. The sensitivity to 𝜎 becomes more evident in the more 
challenging MSMT17 tasks.

These experimental findings strongly support our theoretical anal-
ysis in several aspects. First, the diminishing returns observed when 
increasing batch size beyond 128 align with the 𝑂(1∕

√

𝑛) convergence 
rate predicted by Eq. (13). Second, the optimal performance at 𝜎 = 1.0
and subsequent degradation with larger 𝜎 values validate the theo-
retical relationship established in Eq. (14), demonstrating that larger 
bandwidth values compromise the discriminative power of the MMD 
metric. Furthermore, the more pronounced performance variations in 
MSMT17 transfers corroborate our analysis of domain complexity. 
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Fig. 7. Performance variation with different kernel bandwidth (𝜎) values across four cross-domain Re-ID tasks. (a) Market to Duke, (b) Duke to Market, (c) Market to MSMT, and 
(d) Duke to MSMT. The plots show how mAP and Rank-1/5/10 accuracies vary as 𝜎 increases from 1.0 to 5.0, demonstrating optimal performance at 𝜎 = 1.0 across all transfer 
scenarios.
The consistency between theoretical bounds and experimental results 
validates the robustness of our MMD-based optimization module for 
addressing domain adaptation challenges in person Re-ID.

4.6.3. Analysis of memory requirements
We provide a comprehensive analysis of memory requirements from 

two aspects: memory bank storage and runtime memory dynamics. Our 
framework employs two distinct memory structures, each tailored to 
specific aspects of the domain adaptation process. The first is the online 
memory bank, which is designed for contrastive learning and maintains 
a consistent structure across tasks. The memory requirement 𝑀𝑜𝑛𝑙𝑖𝑛𝑒 is 
calculated as: 
𝑀𝑜𝑛𝑙𝑖𝑛𝑒 = (𝑁𝑠 +𝐾) × 𝑑 × 𝑠 (31)

where 𝑁𝑠 denotes the number of source domain training identities (751 
for Market1501, 702 for DukeMTMC), 𝐾 is the memory queue size (set 
to 8192 in our implementation) and 𝑑 is the feature dimension (set 
to 2048 in our implementation) [9,33]. 𝑠 is the size of each feature 
value (4 bytes). This setup results in a constant memory footprint of 
approximately 73.5 MB according to Eq. (31), irrespective of the target 
domain’s complexity.

The second is the cluster memory 𝑀𝑐𝑙𝑢𝑠𝑡𝑒𝑟, which adapts to the com-
plexity of the dataset and is empirically optimized for performance: 
𝑀𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑘 × 𝑑 × 𝑠 (32)

where 𝑘 is the number of clusters. The selection of the number of clus-
ters 𝑘 is a critical factor in domain adaptive person Re-ID, influenced 
by the dataset’s complexity, category count, distribution characteristics, 
and the clustering algorithm’s performance. The domain adaptation 
tasks we address involve significant domain-specific differences, mean-
ing that the complexity and size of datasets directly impact the required 
granularity of clustering. As such, the choice of 𝑘 must be tailored to 
each specific task.

For the tasks of Market to Duke and Duke to Market, we tested 𝑘 val-
ues of 500, 700, and 900 based on prevailing research insights [9,33,58], 
which involve similarly scaled datasets (12,936 and 16,522 training 
images) and comparable identity counts (751 and 702 training persons). 
As shown in Fig.  8(a) and (b), the optimal 𝑘 value is 700, leading to a 
memory size of approximately 5.74 MB according to Eq. (32). This sug-
gests that this 𝑘 value achieves a balance between capturing sufficient 
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intra-domain variance and avoiding over-segmentation, which can lead 
to noise. When 𝑘 is 500, which leads to insufficient clustering, while 
memory size is 4.10 MB. When 𝑘 is 900, which leads to diminishing 
returns, while memory size is 7.37 MB.

For the more complex Market/Duke to MSMT tasks, which involve 
a larger target dataset (32,621 training images) and more identities 
(1041 training persons). As shown in Fig.  8(c) and (d), the optimal 𝑘
value is 1500, yielding a memory size of approximately 12.29 MB. 𝑘 =
1500 provided the best results, demonstrating that this cluster density is 
sufficient to encapsulate detailed variances without incurring excessive 
fragmentation. We explored 𝑘 values of 500, 1000, 1500, and 2000 [9,
33,58]. When 𝑘 is 500, which leads to inadequate representation (while 
memory size is 4.10 MB), a lower number of clusters failed to capture 
the nuanced feature differences within such complex datasets, resulting 
in suboptimal cross-domain recognition performance. When 𝑘 is 1000, 
it leads to suboptimal clustering, while memory size is 8.19 MB. When 
𝑘 is 1500, which leads to excessive fragmentation, while memory size 
is 16.38 MB.

For the runtime memory analysis, there are two stages involved in 
our method. During Stage One (Pre-training), static memory includes 
154.12 MB for the ResNet50-pro model and an equal amount for the 
Adam optimizer state, totaling approximately 308.24 MB. The batch 
processing of 128 images (256 × 128 × 3) requires about 50 MB, with 
the peak memory usage reaching around 2 GB due to feature maps 
and intermediate computations. During Stage Two (Domain adaptive 
learning), the total static memory consumption includes 387.5 MB 
to 394 MB for the teacher–student networks, 73.5 MB for the online 
memory bank, and dataset-dependent cluster memory, in which 5.74 
MB for Market to Duke and Duke to Market tasks, while 12.29 MB for 
Market/Duke to MSMT tasks. For the dynamic memory requirements, 
primarily due to feature extraction, clustering operations, and EMA 
updates, lead to peak usage of approximately 3 GB for Market to Duke 
and Duke to Market tasks, and 4 GB for Market1501/Duke to MSMT 
tasks.

Our ablation study demonstrates that our memory requirements are 
carefully tuned to the characteristics of each dataset, ensuring optimal 
performance. This design facilitates effective domain adaptation across 
varying dataset complexities while maintaining practical memory usage 
for modern GPUs.
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Fig. 8. Performance analysis of varying cluster numbers (𝑘) across different domain adaptive Re-ID tasks. Results are shown for: (a) Market to Duke, demonstrating optimal 
performance at 𝑘 = 700; (b) Duke to Market, showing similar optimal characteristics; (c) Market to MSMT and (d) Duke to MSMT, both exhibiting best performance at 𝑘 = 1500
due to increased dataset complexity.
Table 16
Impact of Weights on Market to Duke and Duke to Market Performance.
 Weight Setting Market to Duke Duke to Market
 mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) 
 𝛾5 = 0.3 70.2 82.4 90.8 93.1 81.5 91.8 95.6 97.2  
 𝛾5 = 0.5 73.8 85.2 93.1 95.3 84.7 94.6 97.9 99.1  
 𝛾5 = 0.7 71.5 83.1 91.2 93.8 82.3 92.5 96.1 97.8  
 𝛾3 = 0.2 71.6 83.5 91.4 93.9 82.6 92.7 96.3 97.9  
 𝛾3 = 0.3 73.8 85.2 93.1 95.3 84.7 94.6 97.9 99.1  
 𝛾3 = 0.4 72.2 84.0 91.9 94.4 83.4 93.4 96.7 98.3  
 𝛾4 = 0.2 71.9 83.7 91.6 94.1 82.9 92.9 96.5 98.1  
 𝛾4 = 0.3 73.8 85.2 93.1 95.3 84.7 94.6 97.9 99.1  
 𝛾4 = 0.4 72.5 84.2 92.1 94.6 83.7 93.6 96.9 98.5  
The best results are marked in bold.
4.6.4. Variations for weight coefficients 𝛾𝑖
The relationship between different loss components is governed by 

weight coefficients 𝛾𝑖 according to Eq. (26), which are determined 
through both theoretical analysis and comprehensive empirical vali-
dation across all cross-domain tasks. The cross-entropy and standard 
triplet losses, serving as primary supervision components, receive unit 
weights (𝛾1, 𝛾2 = 1.0) to maintain fundamental identity discrimination 
capabilities. 

Tables  16 and 17 present comprehensive ablation studies validating 
these weight selections, revealing several crucial findings. For the 
optimization modules, the MMD-based module plays a domain adap-
tation role, the loss weight is set to 0.5 to prevent over-alignment 
between domains. This value is determined based on the observa-
tion that larger weights (> 0.5) can lead to negative transfer by 
forcing excessive domain alignment, while smaller weights (< 0.5) 
provide insufficient adaptation. The 0.5 weight achieves a balance 
between domain adaptation and preservation of discriminative fea-
tures. The Consistency supervised module is the auxiliary component. 
The uncertainty-modulated triplet loss (𝛾3) and consistency losses (𝛾4) 
receive smaller weights to serve as regularizers. The 0.3 weight is 
chosen because it is large enough to influence model behavior (weights 
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< 0.2 showed minimal impact), and small enough to not overshadow 
primary supervision (weights > 0.4 led to training instability. Thus, 
0.3 provides the best trade-off between regularization and stability. 
Experimental results show that this configuration outperforms other 
combinations across various tasks, with Market to Duke tasks tolerating 
greater weight variation compared to MSMT17 tasks, which are more 
sensitive.

These fixed coefficients work in conjunction with the dynamic 
weight 𝑤(𝑡)𝑖, which modulates sample contributions based on pseudo-
label reliability throughout training. This dual-weighting mechanism 
ensures both structural stability through fixed coefficients and adaptive 
learning through dynamic sample weighting, contributing to the robust 
performance of our approach across diverse cross-domain scenarios.

4.7. Visualization and analysis

4.7.1. Analysis of feature distribution
To vividly illustrate the feature learning capabilities of our proposed 

method, we visualize the learned feature distributions using t-SNE [59] 
on the Market1501 dataset, as shown in Fig.  9.
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Table 17
Impact of Weights on Market to MSMT and Duke to MSMT Performance.
 Weight Setting Market to MSMT Duke to MSMT
 mAP (%) Rank-1(%) Rank-5 (%) Rank-10 (%) mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%) 
 𝛾5 = 0.3 31.5 62.4 72.8 76.5 32.8 63.2 74.5 77.4  
 𝛾5 = 0.5 34.2 65.8 75.5 79.3 35.6 66.5 77.8 80.6  
 𝛾5 = 0.7 32.1 63.2 73.4 77.1 33.5 64.1 75.2 78.1  
 𝛾3 = 0.2 32.3 63.4 73.5 77.2 33.6 64.2 75.3 78.2  
 𝛾3 = 0.3 34.2 65.8 75.5 79.3 35.6 66.5 77.8 80.6  
 𝛾3 = 0.4 32.7 64.1 74.0 77.7 34.1 65.0 76.1 79.0  
 𝛾4 = 0.2 32.5 63.6 73.7 77.5 33.8 64.4 75.5 78.4  
 𝛾4 = 0.3 34.2 65.8 75.5 79.3 35.6 66.5 77.8 80.6  
 𝛾4 = 0.4 32.9 64.3 74.2 77.9 34.3 65.2 76.3 79.2  
The best results are marked in bold.
Fig. 9. t-SNE visualization of feature distributions on Market1501. (a) Pre-trained model on full gallery set; (b) Our optimized model on full gallery set; (c) Pre-trained model on 
20 selected identities; (d) Our optimized model on 20 selected identities.
Figs.  9(a) and (b) compare feature distributions across the complete 
gallery set. The pre-trained model exhibits significant feature over-
lap between different identities, indicating suboptimal discriminative 
power. In contrast, our optimized model demonstrates clear inter-class 
boundaries while maintaining intra-class compactness.

This improvement is further evidenced in Figs.  9(c) and (d), which 
focus on 20 randomly selected identities. The pre-trained model shows 
scattered intra-class features (highlighted by dashed circles), while our 
model achieves well-defined, compact clusters for each identity. This 
enhanced feature separation directly contributes to improved Re-ID 
performance, particularly in challenging cross-domain scenarios.
17
4.7.2. Feature visualization analysis
To visualize the model’s attention patterns, we employ Grad-CAM

[60] to generate activation heatmaps that highlight regions contribut-
ing most significantly to feature extraction. Fig.  10 compares the acti-
vation patterns between the baseline and our optimized model on the 
Market to Duke task.

The baseline model exhibits diffuse activation patterns, with at-
tention scattered across both relevant and irrelevant image regions. 
In contrast, our optimized model demonstrates more focused atten-
tion on identity-discriminative features, particularly anatomical regions 
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Fig. 10. Grad-CAM visualization comparing baseline and optimized models on Market to Duke task. The heatmaps indicate regions of high activation in the feature extraction 
process.
and distinctive accessories. This enhanced feature localization capa-
bility directly contributes to the model’s improved domain adaptation 
performance.

5. Future discussion

While our work advances the field of domain adaptive person 
Re-ID, numerous opportunities remain for further exploration and op-
timization. The first is enhancing algorithmic efficiency, particularly 
in dynamic architecture adjustments and computational resource man-
agement, which could further streamline the deployment of robust 
Re-ID models. Similarly, integrating advanced feature learning tech-
niques holds promise for improving discrimination and generalization, 
which is also our focus. Expanding the application of Re-ID to multi-
domain adaptation, real-world scenarios, and diverse fields such as 
vehicle tracking, wildlife conservation, and industrial automation could 
broaden the impact and utility of these systems. These future direc-
tions highlight the potential for continuous innovation in this rapidly 
evolving field.

6. Conclusion

In this paper, we propose NODW, a comprehensive framework 
for domain adaptive person re-identification that effectively addresses 
cross-domain feature learning and pseudo-label noise challenges. Our 
framework introduces three key components: a silhouette coefficient-
based noise assessment module with dynamic weighting, an MMD-
based domain alignment mechanism, and a consistency-supervised 
learning strategy. Extensive experiments on standard benchmarks
demonstrate the effectiveness of our method, achieving 73.8% mAP for 
Market to Duke task, 84.7% mAP for Duke to Market, and maintaining 
robust performance on the more challenging MSMT17 dataset (34.2% 
mAP for Market to MSMT, and 35.6% mAP for Duke to MSMT). The 
ablation studies validate each component’s contribution, throughout 
all tasks, with the noise assessment providing about 3.8% mAP gain, 
the MMD module adding about 4.8%, and consistency supervision 
contributing about 1.8% improvement while maintaining practical 
computational requirements. These results, combined with the frame-
work’s demonstrated scalability and efficiency, establish NODW as an 
effective solution for real-world cross-domain person re-identification 
challenges.
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